On Some Zarankiewicz Numbers and Bipartite Ramsey Numbers for Quadrilateral

نویسندگان

  • Janusz Dybizbanski
  • Tomasz Dzido
  • Stanislaw P. Radziszowski
چکیده

The Zarankiewicz number z(m,n; s, t) is the maximum number of edges in a subgraph of Km,n that does not contain Ks,t as a subgraph. The bipartite Ramsey number b(n1, · · · , nk) is the least positive integer b such that any coloring of the edges of Kb,b with k colors will result in a monochromatic copy of Kni,ni in the i-th color, for some i, 1 ≤ i ≤ k. If ni = m for all i, then we denote this number by bk(m). In this paper we obtain the exact values of some Zarankiewicz numbers for quadrilateral (s = t = 2), and we derive new bounds for diagonal multicolor bipartite Ramsey numbers avoiding quadrilateral. In particular, we prove that b4(2) = 19, and establish new general lower and upper bounds on bk(2). ∗This research was partially supported by the Polish National Science Centre grant 2011/02/A/ST6/00201.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

Bipartite Ramsey numbers and Zarankiewicz numbers

The Zarankiewicz number z(s, m) is the maximum number of edges in a subgraph of K(s, s) that does not contain K(m, m) as a subgraph. The bipartite Ramsey number b(m, n) is the least positive integer b such that if the edges of K(b, b) are coloured with red and blue, then there always exists a blue K(m, m) or a red K(n, n). In this paper we calculate small exact values of z(s, 2) and determine b...

متن کامل

On some Ramsey Numbers for Quadrilaterals

We will prove that R(C4, C4,K4 − e) = 16. This fills one of the gaps in the tables presented in a 1996 paper by Arste et al. Moreover by using computer methods we improve lower and upper bounds for some other multicolor Ramsey numbers involving quadrilateral C4. We consider 3 and 4-color numbers, our results improve known bounds.

متن کامل

Bounds on Some Ramsey Numbers Involving Quadrilateral

Xiaodong Xu, Guangxi Academy of Sciences, Nanning, China Zehui Shao, Huazhong University of Science and Technology, Wuhan, China Stanis law Radziszowski∗, Rochester Institute of Technology, NY, USA For graphs G1, G2, · · · , Gm, the Ramsey number R(G1, G2, · · · , Gm) is defined to be the smallest integer n such that any m-coloring of the edges of the complete graph Kn must include a monochroma...

متن کامل

Some recent results on Ramsey-type numbers

In this paper we survey author’s recent results on quantitative extensions of Ramsey theory. In particular, we discuss our recent results on Folkman numbers, induced bipartite Ramsey graphs, and explicit constructions of Ramsey graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2015